Point of Care in Critical Biochemistry

18/11/2025

Erasmus Hoge School, Brussel Navorming POCT medewerker/coördinator

Lieve Van Hoovels

Department of Laboratory Medicine, AZORG

Expert commission POCT, Sciensano

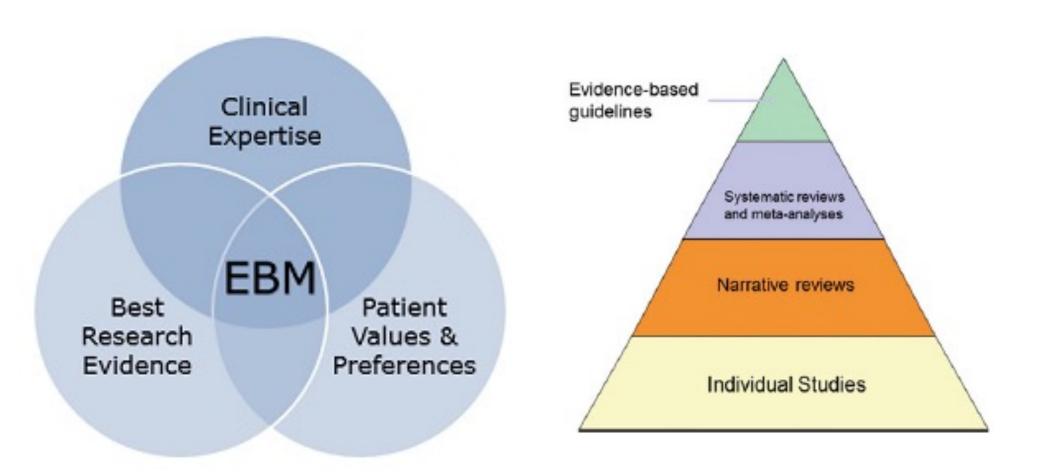
Co-chair of POCT expert working group, National Commission Clinical Biology

Belgian corresponding member C-POCT, IFCC



Definition of POCT

ISO 15189:2022


"Diagnostic testing that is performed **near to or at the site** of the patient care with the
result leading to possible **change in the care**of the patient"

- ✓ Proven effectivity on direct medical acting
- ✓ Analytical reliability of the POCT as compared to the central lab test
- ✓ User friendly without increasing workload

Proven effectivity

Evidence based introduction of POCT

Analytical reliability

POCT compared to the central lab test

POCT management in cooperation with laboratory specialists

Evaluation of POCT equipment

invidiual versus collective evaluation CLSI protocols

Scandinavian evaluation of laboratory equipment for point of care testing

Skandinavisk afprøvning af laboratorieudstyr til patientnære analyser Skandinavisk utprøving av laboratorieutstyr for pasientnær analysering Skandinavisk utprövning av laboratorieutrustning för patientnära analyser

https://skup.org

NIHR Diagnostic Evidence Cooperative Oxford

https://www.oxford.dec.nihr.ac.uk/

Analytical reliability

POCT compared to the central lab test

POCT management in cooperation with laboratory specialists

Belgian legislation

- POCT in hospital: PRL 2025
- POCT outside the hospital: urgent need for legal framework

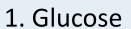
Evaluation of POCT equipment

invidiual versus collective evaluation CLSI protocols

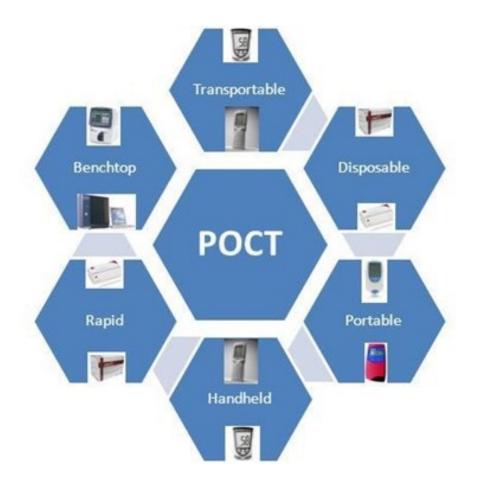
Internal and external quality control for POCT

continuous quality assurance centralization of supply, technical support and supervision (middleware) lotvalidation and lotcontrolled distribution within institution training and education of users result reporting

Regulations and guidelines for POCT


Belgian legislation of POCT (PRL 2025)
International guidelines of POCT (IFCC, EFLM, NHG)
Analytical/clinical performance criteria
FDA, CLIA requirements
IVDR 2017/746/EC
Accrediation: JCI (ISPG 2, AOP 5.1, 5.2, 5.5)

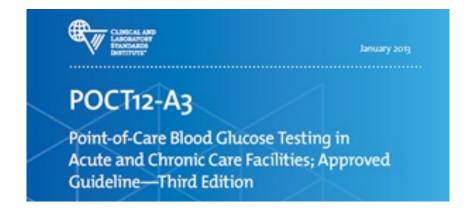
Accrediation: JCI (ISPG 2, AOP 5.1, 5.2, 5.5) ISO 15189:2022


Definition of POCT

ISO 15189:2022

"Diagnostic testing that is performed **near to or at the site** of the patient care with the result leading to possible **change in the care**of the patient"

- 2. CRP
- 3. Troponine



POCT glucose: guidelines

Intensive glycemic control leads to reduced longterm complications of diabetes for Type 1 and Type 2 DM

Nathan et al. NEJM 1993; 329: 977-986 UKPDS Group. Lancet 1998; 352: 837-853

The **management of therapy** to regulate blood glucose concentrations in patients with diabetes

The rapid detection of **extreme glucose concentrations** in patients with symptoms suggesting hypo- or hyperglycemia or in patients who are unconscious without an identified cause (e.g. emergency department)

Intra- and perioperative management of blood glucose concentrations in surgical patients

The monitoring of mothers with diabetes (postpartum), as well as their infants

The monitoring of patients who receive parenteral hyperalimentation or medication likely to affect their blood glucose concentration

POCT glucose: guidelines

ons in patients with symptoms suggesting hypo- or Intra- and perioperative transgement of

The monitoring of mothers with diabetes without an identified cause (e.g. emergency department)

th diabetes (postpartum), as well as their infants

The monitoring of patients who receive parenteral hyperalimentation or medication likely to affect their blood glucose concentration

> CLSI POCT12-A3: 2013 ADA. Diabetes Care 2025; 48: S27-S49

POCT glucose: guidelines

Blood Glucose Monitoring

Type 1 DM: BGM is a critical part of disease management

Florkwoski et al. Crit Rev Clin Lab Sci 2017; 54: 471-494

Type 2 DM (not using insulin): BGM significanly reduces HbA1c doubtful clinical significance

Farmer et al. BMJ 2012; 344; e486

Malanda et al. Cochrane Database Syst Rev 2012; 1: CD005060

ICU: relationship between mortality and glucose

Florkwoski et al. Crit Rev Clin Lab Sci 2017; 54: 471-494

van der Berghe et al.: TGC to 80-110 mg/dL decreased mortality from 8% to 4.6%

Mesotten et al. Best Pract Res Clin Anaesthesiol 2009; 23: 421-429

under discussion because of the risk of hypoglycemia

Preiser et al. Intensive Care Med 2009; 35: 1738-1748

Finfer et al. NEJM 2009; 360: 1283-1297

Finfer et al. NEJM 2012; 367: 1108-1118

TGC with conventional target: 180 mg/dL or lower

Applications: settings

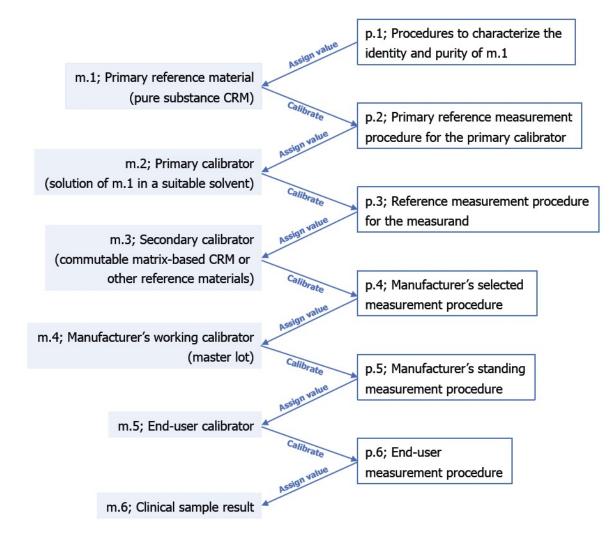
Home testing

Care facility

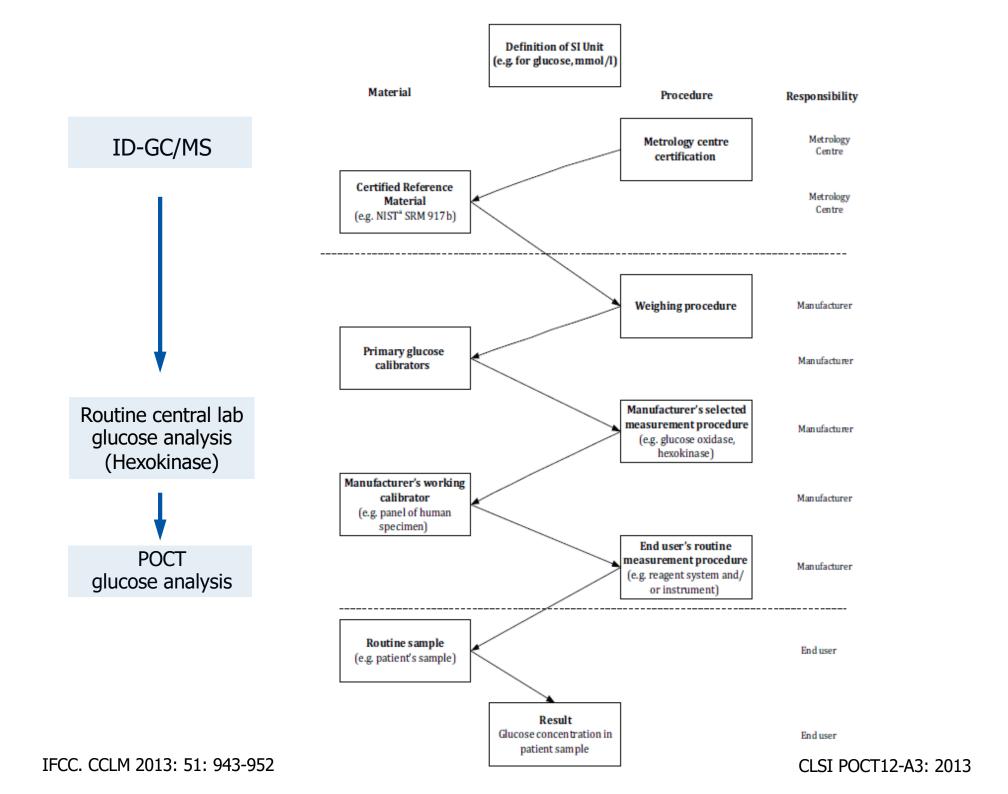
Critical care

Quality requirements

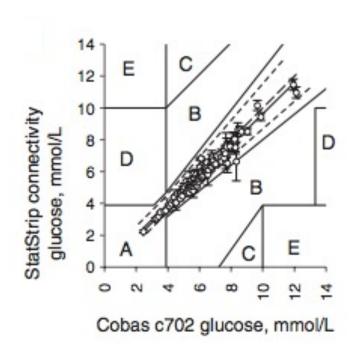
Quality requirements

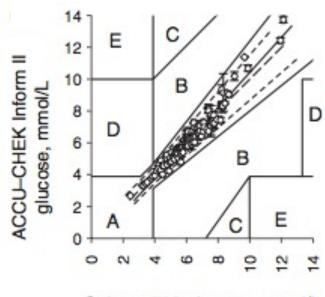

Glucose	ISO 15197 2003	ISO 15197 2013	CLSI POCT12-A3 2013	FDA 2014 (draft)	CRITICAL CARE 2013	RICOS 1999
Cutoff (mg/dL)	75	100	100	70	100	90
Criterion < cutoff > cutoff	± 15 mg/dL ± 20%	± 15 mg/dL ± 15%	± 12,5 mg/dL ± 12,5%	±7 mg/dL ±10%	± 10 mg/dL ±12,5%	10,4%
Coverage (%)	95	95 max. 1% > 20%	95 max. 2% > 20%	99 1% max. ± 15%	98 2% max. ± 20%	95

The laboratory method used for the comparison:


- imprecision ≤2.9%
- bias ≤2.2%
- total error ≤6.9%
- be traceable to a ID-GC/MS reference method

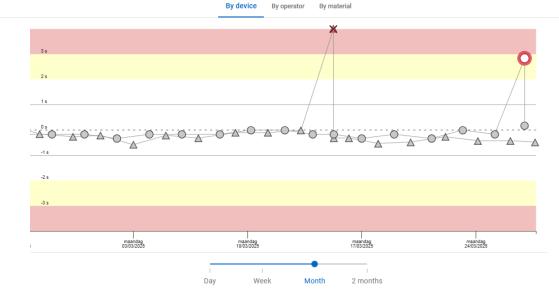
Quality requirements


Metrological traceability



UNCERTAINTY

Consensus error grid


Cobas c702	glucose,	mmol/	L
------------	----------	-------	---

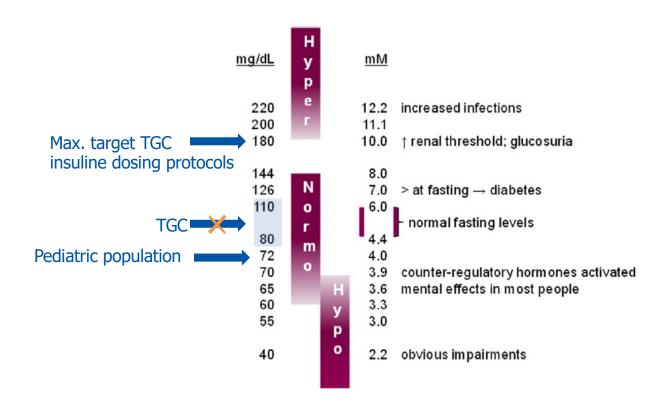
Risk level (CEG zone)	Risk to diabetic patient
A	No effect on clinical action.
В	Altered clinical action — little or no effect on clinical outcome.
С	Altered clinical action — likely to affect clinical outcome.
D	Altered clinical action — could have significant medical risk.
E	Altered clinical action — could have dangerous consequences.

Continuous QA: iQC

Before use

- Meter blocked if not performed
- Meter blocked if '1-3s'

Alternating low/high iQC range

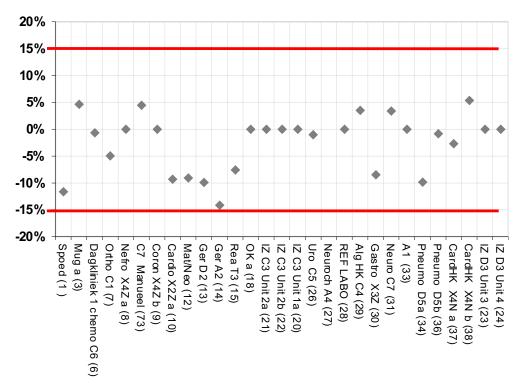

- Manufacturer iQC (target 59 and 318 mg/dL)
- CV% < 5%
- <u>Daily</u> supervision by central lab (middleware)

Other reasons to perform iQC :

- Opening new bottle of strips
- When unexpected results are obtained
- After meter problems

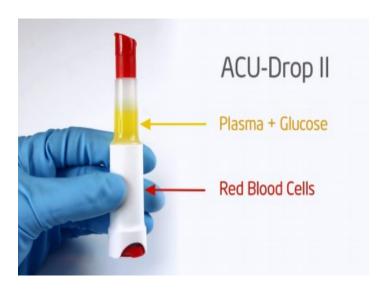
Imprecision

Goal: imprecision < 10% ideally < 5%


Weekly QC

Split sample

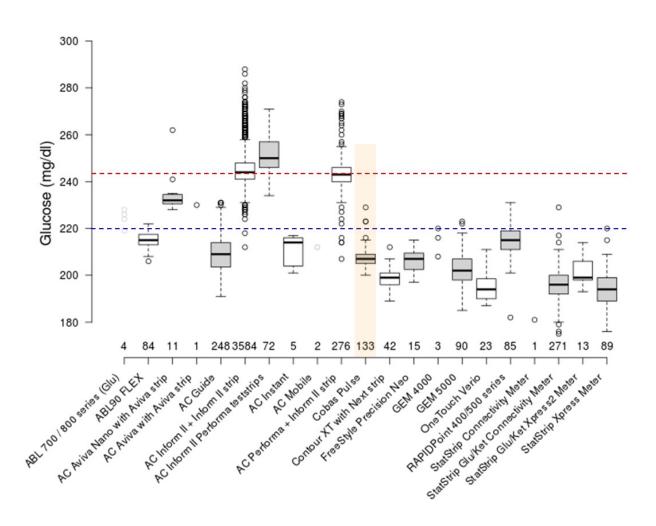
- Fasting patients
- Capillary POCT glucose analysis
- Venous fluoride blood sample hexokinase glucose analysis by central lab method


All hospital wards

- (Electronic) registration by POCT coordinator
- Weekly follow up

eQC Sciensano: 4-monthly

ACU-Drop II CueSee®



Whole blood (RBC + plasma) < bovine

Glycolysis= not an issue

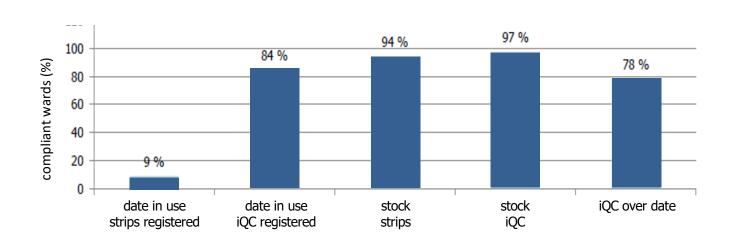
- stable for 8 weeks at 2-8°C
- stable for 4h after reconstitution at RT

eQC Sciensano: 4-monthly

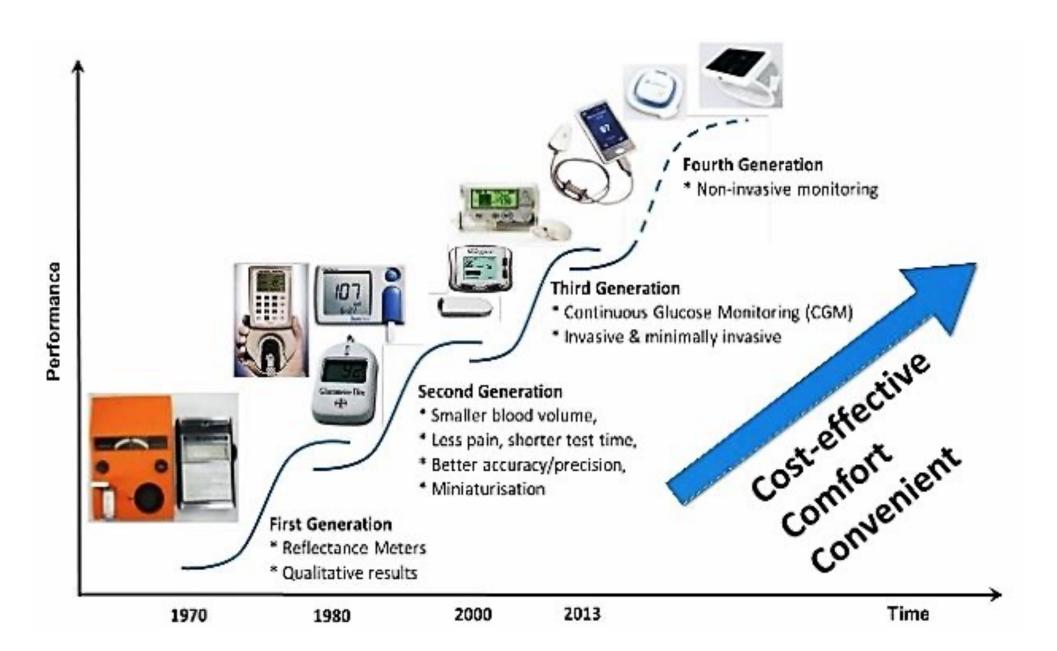
Lotvalidation: new strip lot

Lot restriction

- Lot reservation
- Distribution of test strips by the POCT team


Lot validation

- Min. 2 lot numbers
- **Relative difference** (CLSI EP09-A2)
 - * Hexokinase (central lab method; CobasPro; hexokinase)
 - * Current Cobas Pulse strip lotnumber (to validate accuracy at timepoint 'out')
 - * Venous LiHep whole blood (StatStrip) venous LiHep plasma (Cobas) (min. 40)
 - * Measuring range distribution conform ISO 15197 (spiking vs CLSI POCT12-A3)
 - * Deming regression, Bland-Altman plots
- **Imprecision** (CLSI EP5-A3)
- Criteria (cfr. Method validation)



Yearly internal audit on the wards

- Trendanalysis/ward (< Management review)
- Feedback/ward
- Yearly feedback on general POCT AZORG meeting

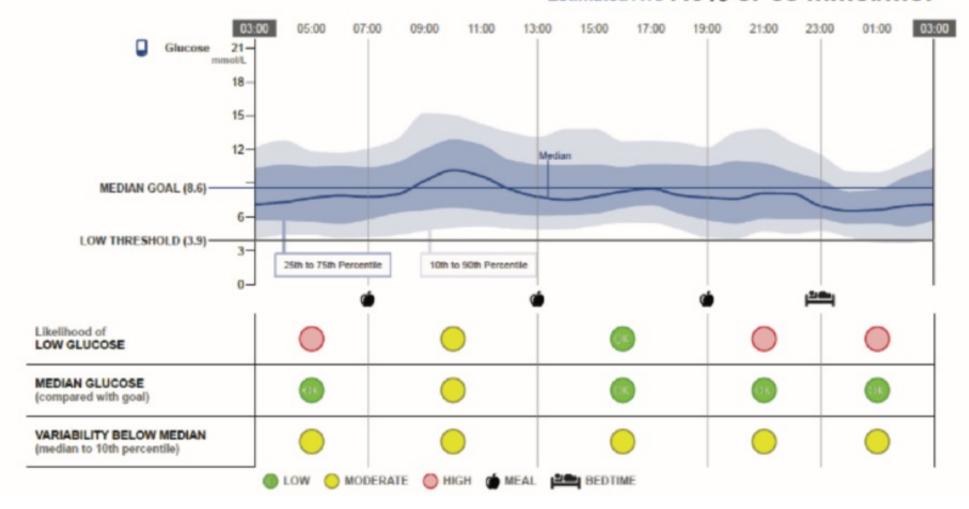
Contineous Glucose Monitoring (CGM)

FreestyleLibre FLASH

- Contineous monitoring of glucose in interstitial fluid
- Belgian diabetic convention: type 1 DM: reimbursed
- Glucose profiling: added value

MiniMed670G

Glucose Pattern Insights


17 July 2015 - 16 October 2015 (92 days)

LOW-GLUCOSE ALLOWANCE SETTING: Medium

MEDIAN GOAL SETTING: 8.6 mmol/L (A1c: 7.0% or 53 mmol/mol)

FreeStyle Libre

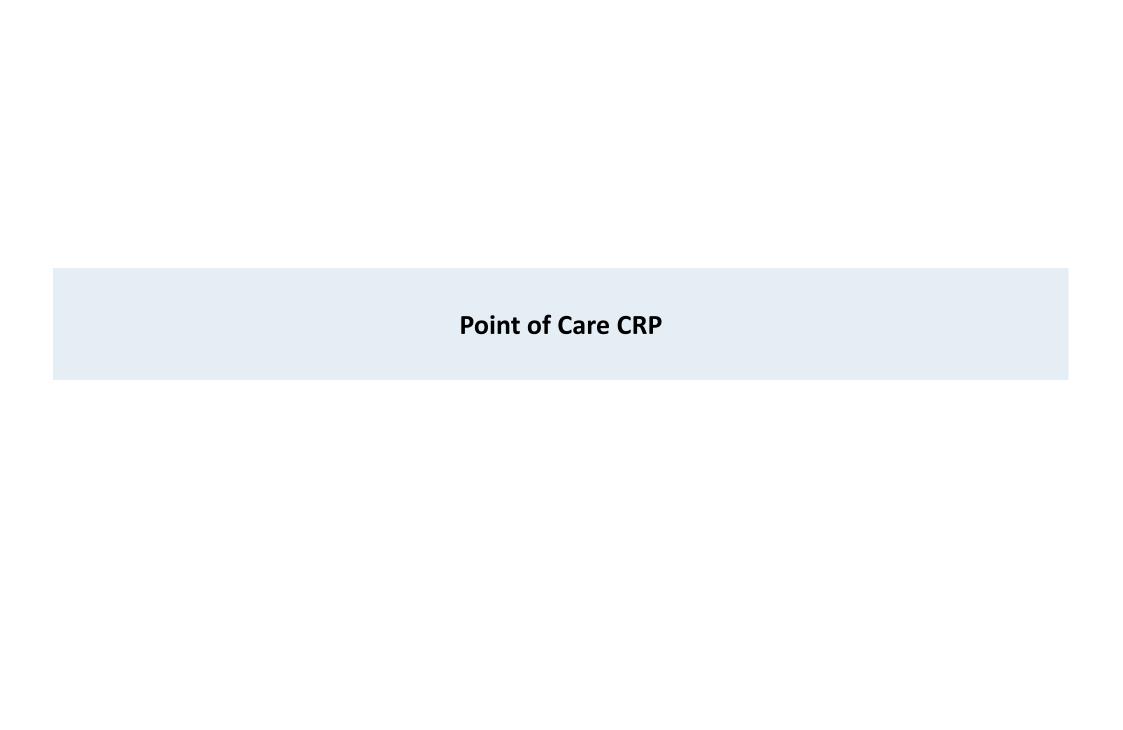
Estimated A1c 7.0% or 53 mmol/mol

Contineous Glucose Monitoring (CGM)

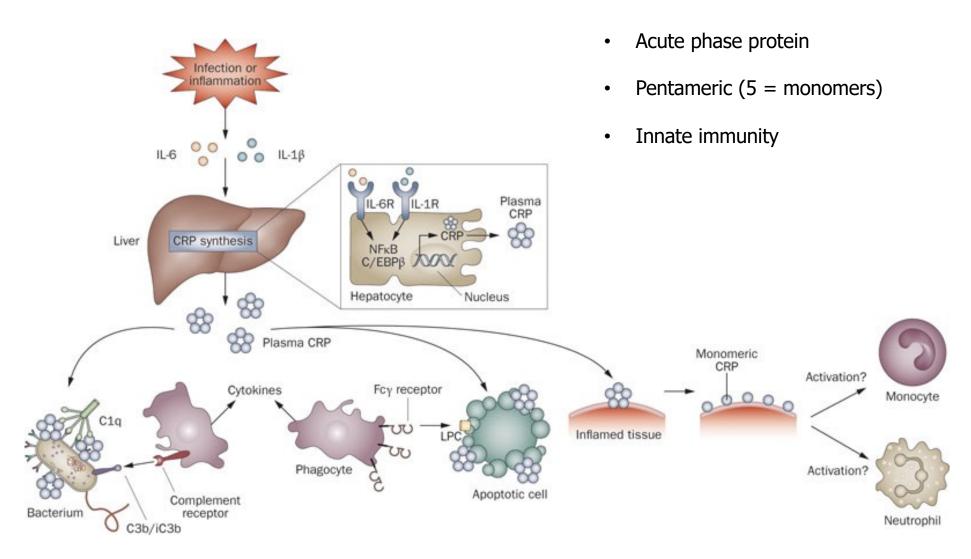
FreestyleLibre FLASH

- Contineous monitoring of glucose in interstitial fluid
- Belgian diabetic convention: type 1 DM: reimbursed
- **Glucose profiling**: added value
- **Ambulatory care only** cfr. analytical requirements

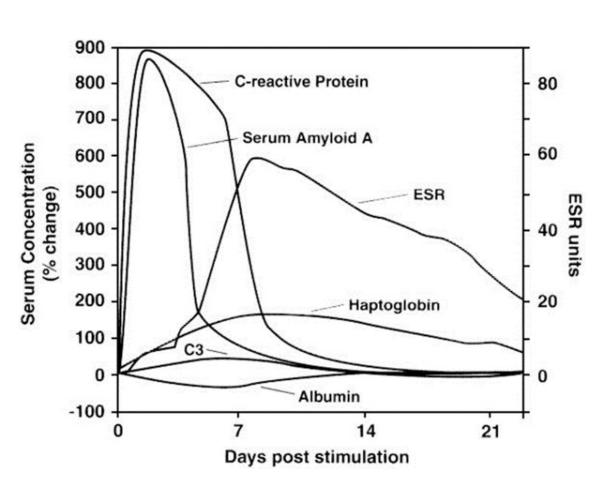
Eversense CGM



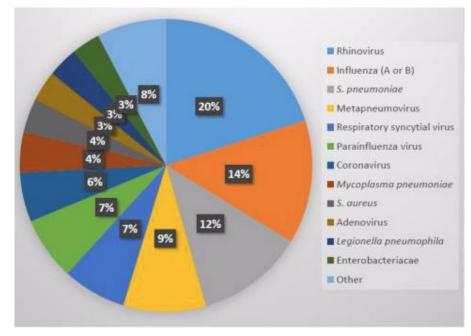
Dexcom G5



MiniMed640G



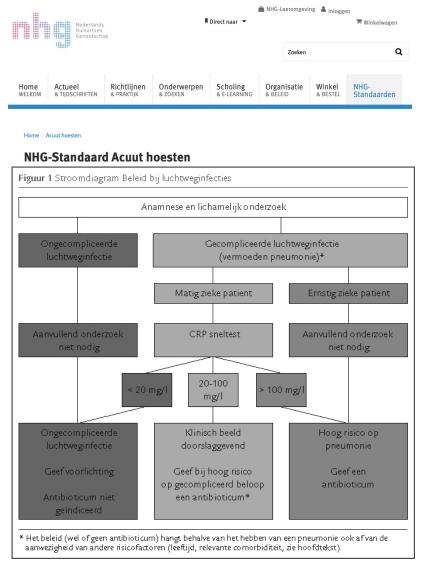
C-reactive protein


C-reactive protein

- Rapid increase of CRP, 4-6 hours after inflammation onset
- After 8 hours, doubling in concentration After 36-50h: peak
- t_{1/2}: 4-7 h

Diagnosis of bacterial LRTI

- Lower respiratory tract infections (LRTI)
 leading infectious cause of death and 6th
 leading cause of death overall worldwide
- Etiology of acute LRTI's is mostly viral
- Antibiotic resistance human threat worldwide
- POCT CRP for differention between viral and bacterial cause of LRTI and to guide AB prescription
- Cost-effective use: rapid and safe (EUnetHTA)
- Incorporated in LRTI diagnostic recommandations of The Netherlands, Norway, Sweden, Germany, Switzerland, Czech Republic, Estonia


Etiology of community acquired pneumonia: 62% viral 29% bacterial

Diagnosis of bacterial LRTI

1.1 Presentation with lower respiratory tract infection

- .1.1 For people presenting with symptoms of <u>lower respiratory tract infection</u> in primary care, consider a point of care C-reactive protein test if after clinical assessment a diagnosis of pneumonia has not been made and it is not clear whether antibiotics should be prescribed. Use the results of the C-reactive protein test to guide antibiotic prescribing in people without a clinical diagnosis of pneumonia as follows:
 - Do not routinely offer antibiotic therapy if the C-reactive protein concentration is less than 20 mg/litre.
 - Consider a delayed antibiotic prescription (a prescription for use at a later date if symptoms worsen)
 if the C-reactive protein concentration is between 20 mg/litre and 100 mg/litre.
 - Offer antibiotic therapy if the C-reactive protein concentration is greater than 100 mg/litre.

Diagnosis of bacterial LRTI

Evidence in pediatric departement : ERNIE2 Trial
 Reduces clinician's uncertainty by ruling out serious infection in children

Lemiengre et al. BJGP 2018; 68: e204-e10 Verbakel JY et al. BMC Pediatr 2014; 14: 207

CRP POCT provides diagnostic value of ruling in or our serious bacterial infection in children

Van den Bruel et al. BMJ 2011; 342: d3082

CRP POCT decreases LOS in pediatric emergencies

Ivaska et al. PLoS One 2015; 10: e0129920 Nijman et al. Pediatr Emerg Care 2015; 31: 633-639 Hernandez-Bou et al. Eur J Clin Microbiol Infec Dis 2017; 36: 1205-1211

Reduction of antibiotic consumption

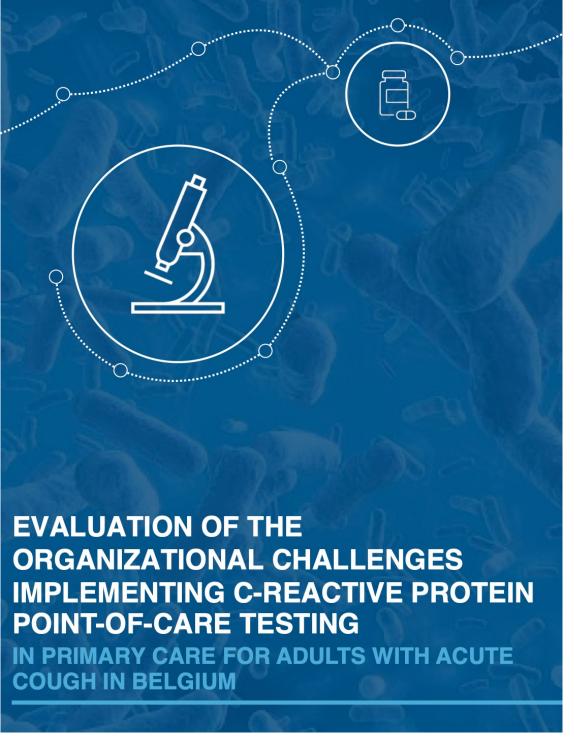
- 171 primary care practices in Belgium
- 6750 children (6m-12y)
- FU: 30 days
- 1st outcome: AB prescription

The clinical decision tool reduced antibiotic prescribing in children without causing harm. Our results support its broader dissemination and implementation to improve the management of acutely ill children in ambulatory care.

Reduction of antibiotic consumption

Cochrane Database of Systematic Reviews

Biomarkers as point-of-care tests to guide prescription of antibiotics in people with acute respiratory infections in primary care (Review)


Smedemark SA, Aabenhus R, Llor C, Fournaise A, Olsen O, Jørgensen KJ

Interest of physicians

Physicians agree that CRP POCT:

- increases diagnostic certainty
- provides reassurance for both clinicians and patients
- helps to manage patient expectations regarding AB
- facilitates shared decision making
- results in high patient satisfaction
- Should not be used as a standalone diagnostic tool

POCT devices

QuikRead Go Easy Mediphos Diagnostics BeLux Renkum, The Netherlands

Alere Afinion 2 Abbott, Wiesbaden, Germany

Cobas b101
Roche Diagnostics, Mannheim, Germany

Lumira Dx LumiraDx, Stirling, UK

	QuikRead Go Easy	Afinion 2	Cobas b101	LumiraDx CRP
	(Mediphos Diagnostics	(Abbott, Wiesbaden,	(Roche Diagnostics,	(LumiraDx, Stirling, UK)
	BeLux, Renkum, Netherlands)	Germany)	Mannheim, Germany)	
Test principle	Immunoturbidimetric assay	Solid phase, sandwich- format, immunochemical assay	Immunoturbidimetric assay	Immunofluorescent assay
Required volume	10 μL	2.5 μL	12 μL	20 μL
Measurement range whole blood	1-200 mg/L	5-200 mg/L	3-400 mg/L	5-250 mg/L
Measurement range plasma/serum	1-120 mg/L	5-160 mg/L	3-400 mg/L	5-250 mg/L
Hematocrit correction	36%-41%	20%-60%	20%-60%	15%-55%
Traceability	ERM DA 474/IFCC	ERM DA 474/IFCC	ERM DA 474/IFCC	ERM DA 474/IFCC

Analytical performance criteria

Comparison method

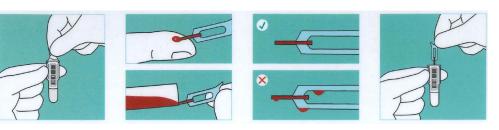
- imprecision ≤2.9%
- Traceable to ERM DA 474/IFCC with maximum fit for purpose allowable measurement uncertainty ≤5.64%

Braga et al. CCLM 2020; 58: e263-265 Borrillo et al. CCLM 2023; 61: 1552-1557

CRP POCT*:

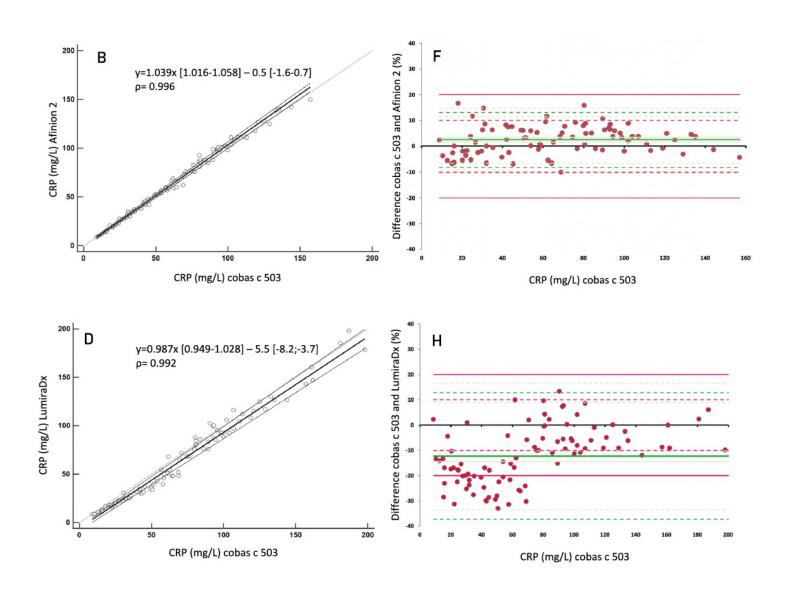
- Imprecision: <10 %
- Accuracy: > 95 % of the CRP results within +/- 20 % of the comparison method.
- Correlation:
 - a slope and intercept not significantly differing from 1.0 and 0.0
 - a Spearman's rank correlation rho ≥ 0.975

* Stavelin et al. Crit. Rev. Clin. Lab. Sci. 2023; https://doi.org/10.1080/10408363.2023.2262029 *https://skup.org

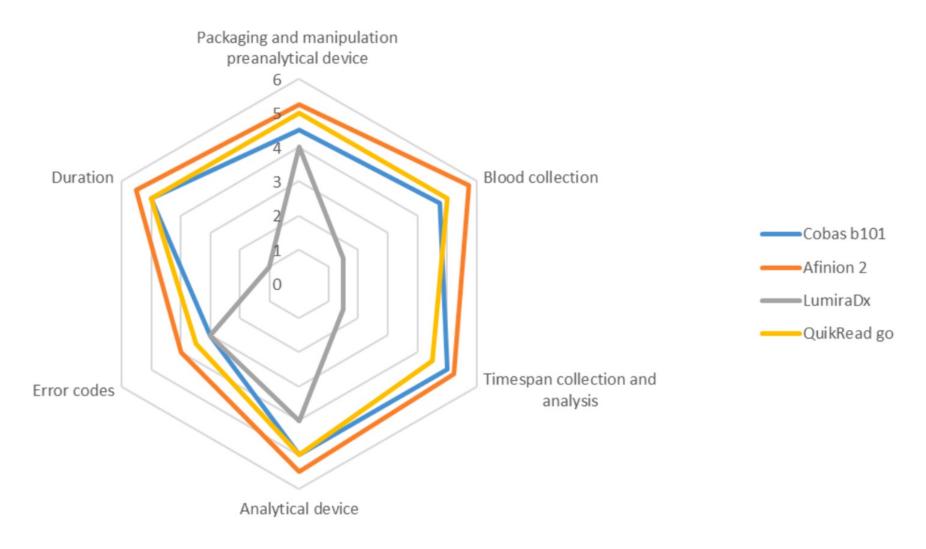

Imprecision (CLSI EP5-A3)

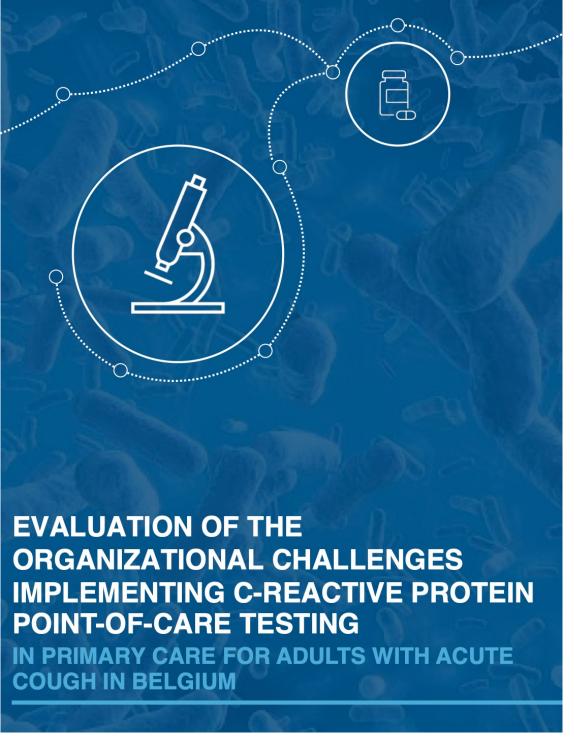
	Low patient pool cobas c 503 (mg/L)	Mean (SD) (mg/L)	CV (%)
cobas b 101	18.6	20.6 (1.01)	4.91
Afinion 2		18.4 (1.39)	7.56
QuikRead go		18.1 (2.07)	11.5
LumiraDx		16.1 (1.45)	9.01
	High patient pool cobas c 503 (mg/L)	Mean (SD) (mg/L)	CV (%)
cobas b 101	98.6	93.1 (4.52)	4.86
Afinion 2		98.7 (7.59)	7.69
QuikRead go		88.8 (9.04)	10.2
LumiraDx		91.3 (4.44)	4.47

Imprecision (CLSI EP5-A3)


	Low patient pool cobas c 503 (mg/L)	Mean (SD) (mg/L)	CV (%)
cobas b 101	18.6	20.6 (1.01)	4.91
Afinion 2		18.4 (1.39)	7.56
QuikRead go		18.1 (2.07)	11.5
LumiraDx		16.1 (1.45)	9.01
	High patient pool cobas c 503 (mg/L)	Mean (SD) (mg/L)	CV (%)
cobas b 101	98.6	93.1 (4.52)	4.86
Afinion 2		98.7 (7.59)	7.69
QuikRead go		88.8 (9.04)	10.2
LumiraDx		91.3 (4.44)	4.47

Imprecisie QuikRead na staalname met gecalibreerde pipet < 10%


Method comparison (CLSI EP9-A2)

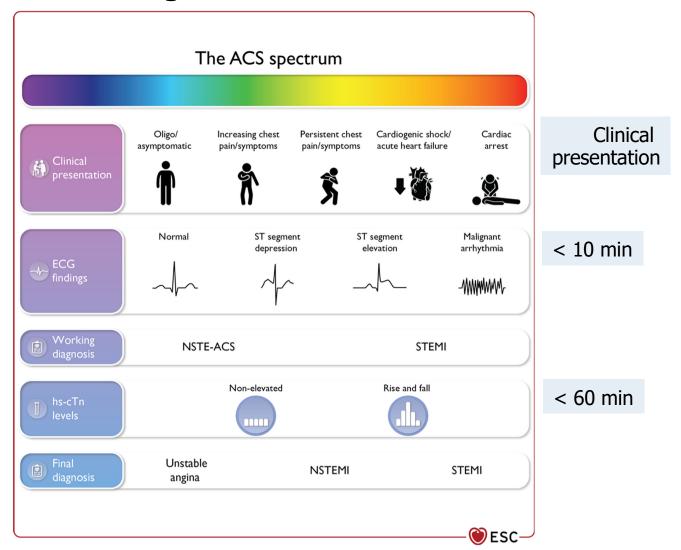


Method comparison (CLSI EP9-A2)

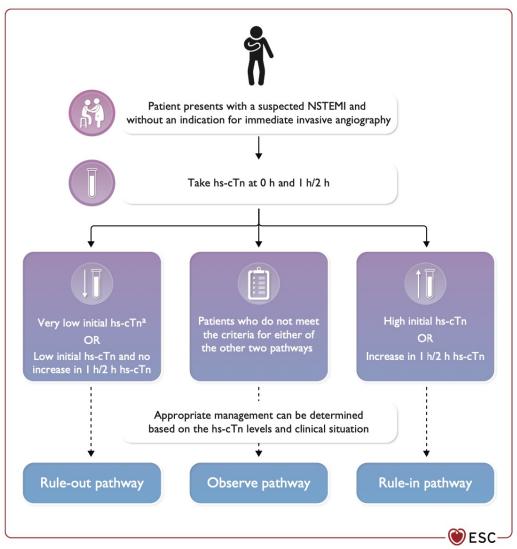
	Passing Bablok reg	gression		Bland-Altman plot	% samples $< +/$ - 20 % mean difference		
	Slope [95 % CI]	Intercept [95 % CI]	Spearman's ρ [95 % CI]	Mean difference (%) [95 % CI]			
cobas b 101	0.954	0.4	0.996	-2.58	97.8		
	[0.931-0.980]	[-0.7-1.7]	[0.994-0.997]	[-17.19-12.04]			
Afinion 2	1.039	-0.5	0.996	2.53	100.0		
	[1.016-1.058]	[-1.6-0.7]	[0.994-0.997]	[-8.21-13.28]			
QuikRead go	0.904	1.5	0.991	-6.34	97.5		
	[0.872-0.934]	[0.1-2.5]	[0.985-0.994]	[-22.82-10.15]			
LumiraDx	0.987	-5.5	0.992	-13.66	66.3		
	[0.949–1.028]	[-8.2;-3.7]	[0.987-0.994]	[-36.68–9.37]			

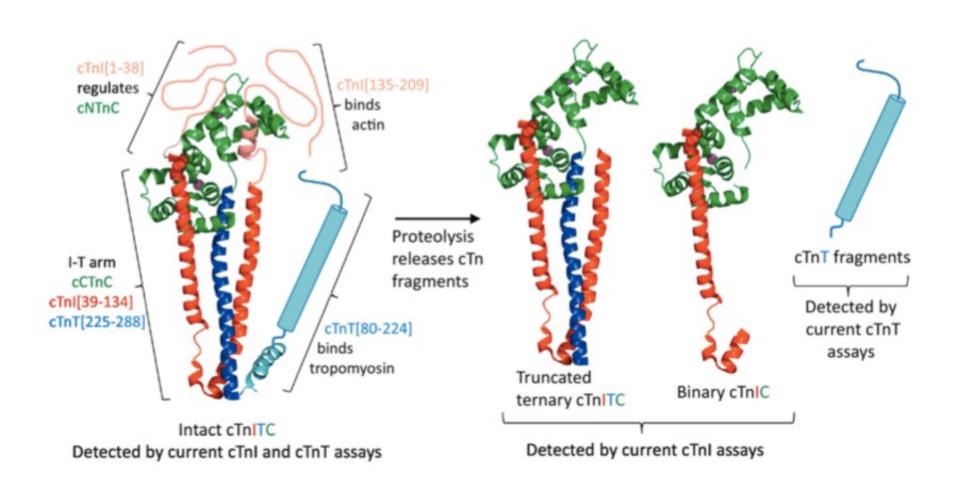
User friendliness

POCT CRP


Conclusion

- Analytical Performance and linkage of devices (WP1): The study assessed the
 performance and user-friendliness of four POCT-CRP devices, focusing on analytical
 accuracy, precision, and traceability. Three out of four devices met the required criteria.
 The findings emphasized the need for strong quality assurance systems led by clinical
 laboratories to ensure reliable results.
- 2. End-user Training and Quality Assurance (WP2): <u>Training</u> of general practitioners and their staff was crucial for ensuring proper device usage. The report highlights the importance of <u>ongoing quality assurance</u> to maintain device accuracy and avoid negative public health consequences from incorrect usage.
- 3. Implementation Process and Stakeholder Engagement (WP3): A pilot implementation was conducted, and stakeholder feedback was gathered through interviews and focus group discussions. The findings revealed that the CRP tests were seen as valuable tools in clinical decision-making, particularly in reducing unnecessary antibiotic prescriptions. The study highlighted the importance of ease of use and proper integration into the clinical workflow for successful implementation.
- 4. Budget Impact Analysis (WP4): A budget impact analysis was conducted to estimate the financial consequences of implementing CRP POCT in Belgian general practice. The analysis projected an incremental cost of €12.8 million over five years compared to usual care, but it also highlighted the long-term benefits of reduced antibiotic use and improved AMR management.

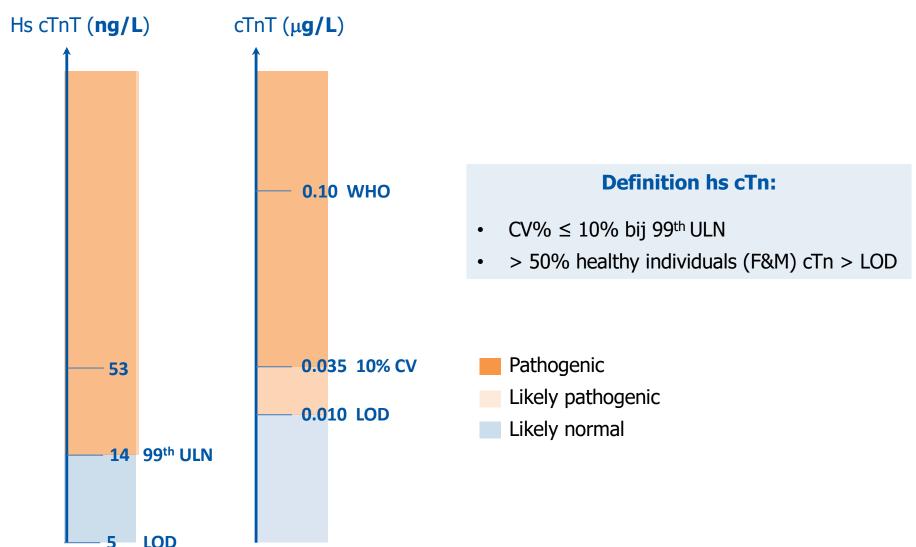

The study concludes that while the implementation of CRP POCT devices in Belgian general practice is promising, careful consideration of organizational, financial, and training aspects is essential for large-scale adoption. The findings offer policymakers valuable insights into balancing the costs of implementation with the public health benefits of reducing AMR.


ESC guidelines ACS 2023

ESC guidelines ACS 2023

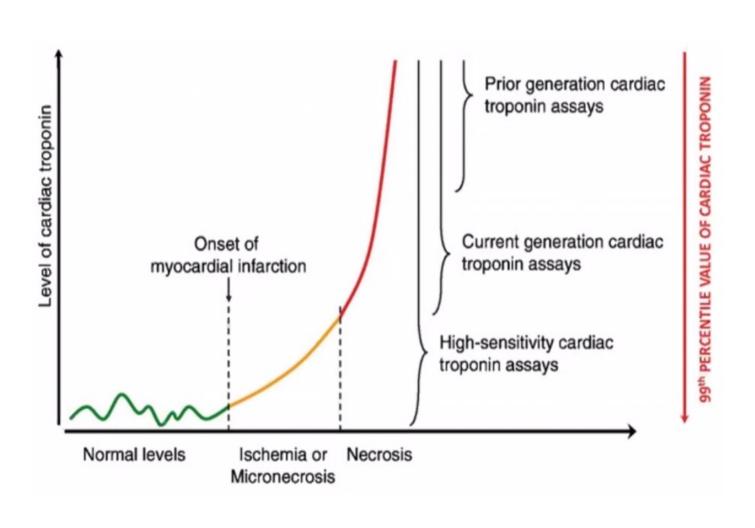
Cardiac troponin

Analytical performance criteria

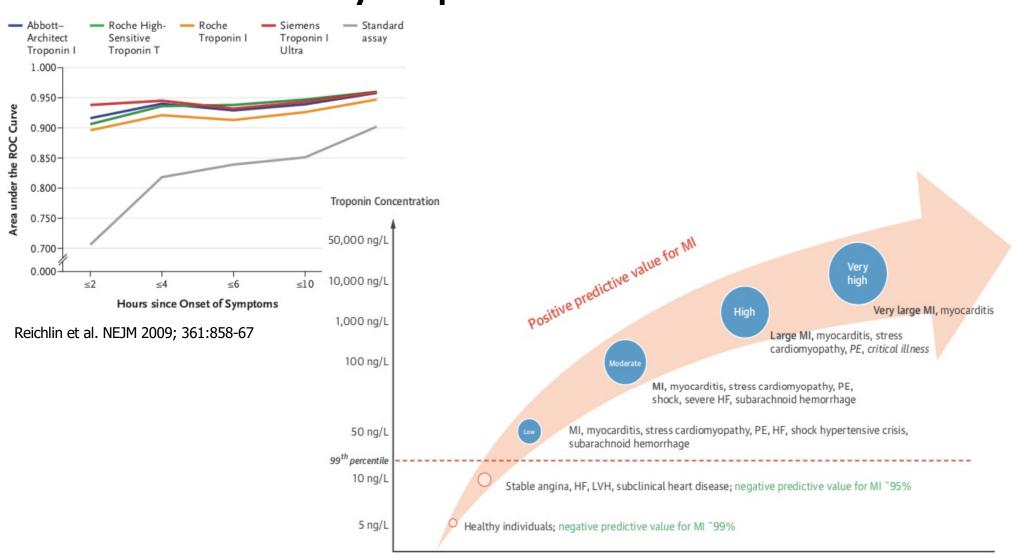

Clinical Chemistry 64:4 645-655 (2018)

Special Report

Clinical Laboratory Practice Recommendations for the Use of Cardiac Troponin in Acute Coronary Syndrome: Expert Opinion from the Academy of the American Association for Clinical Chemistry and the Task Force on Clinical Applications of Cardiac Bio-Markers of the International Federation of Clinical Chemistry and Laboratory Medicine


Alan H.B. Wu,^{1*} Robert H. Christenson,² Dina N. Greene,³ Allan S. Jaffe,⁴ Peter A. Kavsak,⁵ Jordi Ordonez-Llanos,⁶ and Fred S. Apple⁷

Analytical performance criteria



Twerenbold *et al.* Eur Heart J 2012; 72: 2231-64 Alan *et al.* Clin Chem 2018; 64: 645-655

Analytical performance criteria

Analytical performance criteria

ESC guidelines ACS 2023

Different cTn method specific **cut-offs** defined

!! cTn methods are not interchangeable

3.3.2. Central laboratory vs. point of care

The vast majority of cTn assays that run on automated platforms in the central laboratory are sensitive (i.e. allow for the detection of cTn in $\sim\!20{-}50\%$ of healthy individuals) or high-sensitivity (i.e. allow for the detection of cTn in $\sim\!50{-}95\%$ of healthy individuals) assays. High-sensitivity assays are recommended over lower-sensitivity assays, as they provide higher diagnostic accuracy at an identical low cost. $^{1,12,15,25{-}27,57,63}$

The majority of currently used point-of-care (POC) tests cannot be considered high-sensitivity assays.⁶⁴ The advantage of POC tests is a shorter turnaround time. However, this is counterbalanced by lower sensitivity, lower diagnostic accuracy, and lower negative predictive value (NPV). A randomized trial in low-risk chest pain patients with suspected NSTE-ACS and onset of symptoms ≥2 h before ambulance presentation reported that the use of a pre-hospital rule-out strategy (with a single POC conventional troponin T test) resulted in a significant reduction of 30-day healthcare costs and a comparable major adverse cardiovascular event (MACE) rate in comparison to an ED rule-out strategy (with evaluation as per standard local practice).⁶⁵

Overall, automated assays have been more thoroughly evaluated than POC tests and are currently preferred. 1,12–15,26,34,35,53,55–58 However, this is a rapidly developing field and it will be important to re-evaluate this preference when more extensively validated high-sensitivity POC tests are clinically available. 66–68

Table 1 Characteristics, analytical, and clinical performance of high-sensitivity cardiac troponin assays available at the point of care

Platform	LoD (ng/L)	10% CV (ng/L)	URL (overall; ng/L)	URL male (ng/L)	URL female (ng/L)	Detectable proportion of the reference population	Time to results	Specimen	Approved for capillary testing	evaluation studies	Clinical performance studies
Bench top platforms											
Pathfast (LSI Medience, formerly Mitsubishi)	2.3	15	28	30	21	>52%	<17 min	Heparinized or EDTA plasma or venous whole blood	NA	YES ^{11,16}	YES ¹⁶ Rule-out <4 ng/L Rule-in ≥90 ng/L
SpinChip (SpinChip Diagnostics)	1.1 (plasma) 1.2 (whole blood)	3.7	31.7	36.9	27.3	>62%	~10 min	Heparinized plasma or whole blood	NA	YES ¹³	YES ¹³ Rule-out <7 ng/L Rule-in ≥36 ng/L
Pylon (ET Healthcare)	1.2–1.4	10 (whole blood) 5 (plasma)	27	27	21	>89%	<20 min	EDTA plasma, EDTA whole blood	NA	YES ¹²	NO
Portable handheld testing	platforms										
i-STAT-1 Alinity (Abbott)	1.6 (whole blood) 1.1 (plasma)	6.9 (whole blood) 3.7 (plasma)	21	28	13	>50%	~15 min	lithium heparin plasma or whole blood	No	No	Yes ¹⁹ Rule-out <3 ng/l
Atellica VTLi (Siemens Healthineers)	1.2 (plasma) 1.6 (whole blood)	6.7 (plasma) 8.9 (whole blood)	23	27	18	≥80%	~8 Mins	lithium heparin plasma or whole blood	Yes ²⁰	Yes ^{21,22}	Yes ^{15,23,24} Rule-out <4 ng/L Rule-in >54 ng/L
TriageTrue (QuidelOrtho)	1.6 (plasma) 1.9 (whole blood)	8.4 (plasma), 6.2 (whole blood)	20.5	25.7	14.4	≥50%	<20 min	EDTA plasma or whole blood	No	Yes ²⁵	Yes ^{14,25} Rule-out <3 ng/l Rule-in >60 ng/L

Information not available, NA; ethylenediaminetetraacidic acid, EDTA; surface plasmon-field enhanced fluorescence spectroscopy, SPFS; lower limit of detection, LoD; coefficient of variation, CV; upper reference limit defined as the 99th percentile among healthy, URL; female, F; male, M;, and minutes, min.

Reported numbers are from package inserts of assay manufacturers and of publications where available. All listed assays measure cardiac troponin I. The availability of the listed assays depends on local regulatory approval. Please see the IFCC Biomarkers Reference Tables online for contemporary information. More assays are currently in development.

Central laboratory versus POCT hs cTn

Table 2 Advantages and disadvantages of point-of-care vs central laboratory high-sensitivity cardiac troponin testing

	Point of care	Central laboratory
Advantages	Actionable results in real-time Feasible for use in a broad range of settings New opportunities for biomarker-guided care in outpatient settings, prehospital settings, primary care and other healthcare settings May facilitate earlier diagnosis and treatment May reduce the time to further testing or cardiac investigation in those where the diagnosis remains uncertain May avoid unnecessary additional central laboratory tests	Single platform for testing in all settings reduces the risk of confusion where patients move from one setting to another for serial measurements Utilizes existing laboratory infrastructure, staff, training and quality controls Lower cost of testing
Disadvantages	Failed test rate higher using whole blood Staff training in operation and quality control Risk of missed diagnosis if results not integrated into laboratory information system/patient record system Potential for greater diagnostic uncertainty where findings are discordant between POC and central laboratory Need to establish new baseline on the central laboratory platform for high-risk patients requiring admission for serial measurements Potential additional cost to the local healthcare system	Longer time for availability of results Lack of real-time access to results Delays in diagnosis, investigations and treatment Unnecessary repeat testing in serial protocols where the results are not available within 1 h Requires central laboratory infrastructure, staffing, equipment and training on a 24 h basis Limited to larger healthcare settings Encourages transfer of patients to Emergency Department who could be evaluated in a community or outpatient setting

Table 3 Considerations prior to implementation of high-sensitivity cardiac troponin assays at the point of care

Laboratory	ED or hospital setting	Other settings
Analytical performance evaluation	Clinical performance and safety in specific clinical enviro	onment
Accreditation requirements, regulatory of	oversight, and quality assurance processes	
Maintenance, calibration and ongoing ver	rification of instrument performance	
Training	Training, education and staff competency	
Integration with laboratory information systems, data and results monitoring.	Documentation and integration within electronic health records	Documentation and integration with electronic health records
Operational integration: workflow, contingency planning	Operational integration: workflow and turnaround times, efficiency and peak deplanning.	emand planning, avoidance of bottlenecks, and contingenc
	Device placement and accessibility, location, power, por requirements	tability, storage of cartridges, number of devices, space
	Scalability and flexibility with patient volume and clinical	demands
	Local patient assessment and management pathways	Setting-specific assessment and management pathways
	Clinical management and interpretation of results	
Interference and errors: Knowledge and	management	
	Evaluation of impact of additional testing and investigation	ons required. Mitigation of other patient delays
Workforce impact, POC operators, staff	fing levels	
Staff adaptation to change and new techn	nology	
	Environmental challenges—movement	Environmental challenges—heat, vibration, movement
Impact assessment—laboratory flow	Impact assessment—patient safety and outcomes, patient	nt flow, disposition
Cost evaluation—Initial investment, long	-term costs, cost-benefit	
	Infection control	
F 1	anagement and sustainability	

cTn: analytical reliability

cTn in POCT?

TAT cTn = ≤ 60 min.

Type of cTn: cTnT versus cTnI

Sample type: whole blood
 Cavé hemolysis: cTnI ↑ and cTnT ↓

 Contemporary versus high sensitive with proven clinical effectivity

- POCT contemporary cTn not recommended
 Exception: TAT core lab cTn > 60 min
- Not interchangeably with routine central lab method
- Cavé: hemolysis

Overall conclusion

"Diagnostic testing that is performed **near to or at the site** of the patient care with the
result leading to possible **change in the care**of the patient"

- Proven effectivity on direct medical acting
- Analytical reliability of the POCT as compared to the central lab test
- ✓ User friendly without increasing workload

Acknowledgments

Thank you!

Colleagues Clinical Biologists AZORG
Members POCT committee AZORG

24/24 POCT team AZORG (all sites)

Expert commission POCT Sciensano Co-chair of POCT expert working group of National Commission Clinical Biology

IFCC POCT working group

On behalf of the working group on POCT of the Belgian Commission on Clinical Biology and in cooperation with Sciensano and RBSLM

Transforming healthcare:

advances and innovations in Point-Of-Care Testing

26.03 20**26**

Antwerp Zoo Congress Center

www.rbslm.be/2026/poct-symposium