

Innovation & Al

Tricky business?

Erasmus Hogeschool Brussel

Johan Loeckx

29/08/2019 jloeckx@ai.vub.ac.be

VUB Artificial Intelligence Lab

Strong heritage, leading position

Founded in 1983 by Prof. Luc Steels

First AI lab on the European mainland

36 years of experience

950 publications 28 000 citations

Current projects 4 EU projects 20+ national projects 10 industry funded projects

5 spin-offs former colleagues @ DeepMind, Prowler, MIT, CalTech, Collibra, Sony, ...

Many successes in the past

What is Al?

Al studies...

- 1. the nature and mechanisms of intelligence
- 2. Using formal methods, an
- 3. Attempts to **reconstruct** it.

Playing chess...

Still a manifestation of (human) intelligence?

Will a computer use the same "intelligence"?

A machine that can fly

- Do not copy the flapping wings
- But learn how a bird uses physics to fly

The question of whether a computer can think is no more interesting than the question of whether a submarine can swim -- Edsger W. Dijkstra

Formalisms

SEARCH

	3	49	2	147	6	
9		3	47	5		1
	1	8	79	6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

LOGIC

(e.g. model expansion, business rule engines)

MODELLING & OPTIMIZATION

("machine learning")

You should care: Al is transformative

Al is transformative

1. Changes the nature of **knowledge**

- a. Allows companies to formalize knowledge
- b. Moves from humans to self-learning machines

2. Relationship with autonomous machines changes

- a. humans go from commanding to (intuitive?) interacting
- b. go beyond our understanding (e.g. high dimensional)

3. They have "infinite" scale.

- a. micro-personalization, human empowerment
- b. reason, on the basis of millions, about you.

We have come to a point that the systems we need are **too complex for humans** to build, understand or maintain.

The real transformative <u>value</u> of AI lies exactly in <u>the systems we do not</u> <u>understand</u>

Conceptually

- What is intelligence? Is intelligent behaviour enough?
- Al is always "on the edge": once a problem is solved, we no longer call it Al...
 - playing chess
 - route planning
 - predictive models
 - ?
- It challenges our thinking too, our mental models!!

Example: meeting room occupation

temperature IR sensor

We want to detect automatically when the classroom is occupied.

⇒ Set up an experiment to learn the relation!

First look at sensor data

Nice: we can use AI to learn the #persons in the room.

Used for decision making:

Rooms with <20 users/day will be discarded.

First look at sensor data

The board decides to **cut down energy.** What will happen to the predictions?

Energy saving \Rightarrow A/C off at night

Negative #persons?! What is the consequence?

The model **overgeneralized**.

Room will be discarded as the sum < 20.

AHA!

<u>We</u> know that the #persons cannot be negative.

Strange... what happens here?

Room no longer in use? Very cold outside?

The **sensor** input was **blocked** and outputs 0.

Room will be discarded.

Then summer comes...

A/C is shut off in summer. 20 °C is no longer a reference.

<u>We</u> know the sensor is just a proxy to measure t° increase by human presence

Algorithms have no idea of the **context**, unless you tell them so.

We underestimate our intelligence!

- Tactile feedback
- Substance identification
- Memory of weight
- Geometric laziness

Interdisciplinary (intersection, not union)

abstract

how does my business work?

but explained to a computer...

that is, in mathematical terms?

Be careful with the word understanding

• Recognizing a **picture** of a guitar

<> knowing what a guitar is

impact for your organisation

Skills of the future

• new cognitive skills

- new technologies
- interdisciplinary + expert

meta-cognitive skills

- coping with ever changing knowledge & technology
- lifelong learning

non-cognitive "soft" skills

- empathy: listen to different stakeholders
- creative
- open-minded; accept machines / open to other disciplines
- critical thinking

Interdisciplinary, inter-"species"

- Data from across business units
- Interdisciplinary AI/HI teams
- Business IT fusion
 + faster IT semi-automated
- Business case hard to predict as AI becomes part of the problem solving phase

Data management & governance

- Collection of "the right" data (meant for computers, not humans)
- Data quality
- Sample cost
- Biases
- Future proof learning signals (e.g. annotation)

What can you do?

Not black/white

- Analytics 3.0
 - Descriptive: what did I do right/wrong?
 - → what actions in the past led to my current success? (credit assignment problem)
 - Predictive: simulate what-if scenarios
 - \rightarrow what results will I obtain, given future actions that I will take?
 - Prescriptive: what should/could I do next?
 - \rightarrow what actions to take to obtain a desired result? Causality?
- Prioritization
- Personalization

Many settings besides automation

- Summarization of data & visualizations \rightarrow e.g. overall quality instead of samples
- Planning and orchestration
- Enrichment of data

 \rightarrow psychometrics, IOT, more interpretation of data

Intuitive interfaces

 \rightarrow voice / gestures / chatbots

Start today...

- 1. Gain **insight** in the **technology** and its limits.
- 2. Understand the new **business models** (platforms)
- 3. Understand your value chain.
- 4. Think global (competition) and across silo's (internal).

Start today (part 2)

- 5. Small is not necessarily better in Al!
- 6. Separate your **business logic** from peripheral operations.
- 7. Create a data **strategy**. Go find **good learning signals**
- 8. Collect both data and the **process** that generates this data!

Start today (part 3)

- 9. Consider all kinds of AI & settings
- 10. Do NOT approach it as a technical problem!

11. Think HI/AI teams, AI is good in:

- high-dimensional data
- non-linearity
- entangled information

Interested in trainings / our R&D offer?

Johan Loeckx jloeckx@ai.vub.ac.be https://ai.vub.ac.be

+32(0)486 37 98 71

